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The method of the prior-derived F constraints (PDC) enhances the quality of

reconstructions of electron densities from X-ray diffraction data by the

maximum-entropy method (MEM). The method concentrates on artifacts

arising due to inaccurate extrapolation of non-measured data by the MEM.

While these artifacts are unavoidable, when a flat prior is used, they can be

effectively suppressed, if the prior information about the structure is known in

the form of a procrystal prior electron density. The missing, usually high-angle,

structure factors can be effectively substituted by the structure factors derived

from the procrystal prior. This approach eliminates the occurrence of spurious

peaks in the difference electron densities in the vicinity of the atomic positions.

The method is illustrated with a simple one-dimensional example. Its use is then

demonstrated on simulated data of oxalic acid dihydrate and on experimental

data of sodium nitrite.

1. Introduction

The maximum-entropy method (MEM) is a general-purpose

method for data analysis, pioneered mainly by the works of

Jaynes, e.g. Jaynes (1957, 1979, 1986). The purpose of the

method is to extract the maximum amount of information

from the data, without introducing artifacts or assumptions

based on models (Sivia, 1996). One of its applications in

crystallography is the reconstruction of the electron density in

the unit cell from X-ray diffraction data (Collins, 1982;

Gilmore, 1996). By virtue of its properties, the MEM should be

able to replace model-based refinements for the determina-

tion of advanced structural features, like disorder, anharmonic

temperature displacements and the electron density in the

chemical bond (multipole parameters), as well as the shapes of

modulation functions of aperiodic crystals (Bagautdinov et al.,

1998; Dinnebier et al., 1999; Wang et al., 2001; van Smaalen et

al., 2003; Takata et al., 1999). However, it has been pointed out

that the reconstructed electron density [�MEMðrÞ] suffers from

artifacts that are specific to the MEM (Jauch & Palmer, 1993;

Jauch, 1994; de Vries et al., 1996; Roversi et al., 1998; Palatinus

& van Smaalen, 2002). The magnitudes of the noise or spu-

rious maxima in �MEMðrÞ may be larger than the features of

interest, especially so when the electron density in the

chemical bond is studied. The most extensively analyzed

example is silicon, for which the MEM may produce a local

maximum in �MEMðrÞ at the center of the Si—Si bond, which

has been shown to be an artifact (Sakata & Sato, 1990; de

Vries et al., 1996). Several modifications of the MEM have

been proposed that aim at repairing these problems.

Two main sources of errors can be identified, which produce

artifacts in �MEMðrÞ. One type of error is related to series-

termination effects, as is the result of the availability of only a

finite (and often limited) number of reflections in any data set

(Jauch, 1994). These artifacts can effectively be suppressed by

reducing the dynamic range of the problem. The application of

the maximum-entropy (MaxEnt) principle to the difference

electron density (Papoular et al., 1996) or to the valence

electrons only (Roversi et al., 1998) have been proposed as

MaxEnt methods with a reduced dynamic range in reciprocal

space. Alternatively, the use of a sufficiently informative

reference electron density (prior) corresponds to a reduction

of the dynamic range in direct space and also suppresses

artifacts (de Vries et al., 1996; Papoular et al., 2002; Palatinus &

van Smaalen, 2002).

The second type of error is due to the sensitivity of the

MEM to the distribution of weights in the �2 constraint on the

experimental data. Artifacts are produced in �MEMðrÞ even if

exact values for the standard uncertainties of the reflection

intensities are available for the definition of the weights in the

�2 constraint. The effect on �2 has been described in detail

(Jauch, 1994; de Vries et al., 1994; Iversen et al., 1997). At

convergence, those structure factors that are most sensitive to

changes of the entropy are estimated incorrectly, in order to

decrease the entropy as much as possible at lowest cost of

constraint. These reflections are known as outliers. One or two

outliers often account for a substantial part of �2, while the

other reflections are over-fitted. This problem can be reduced

by employing different weight schemes within the �2

constraint (de Vries et al., 1994), or by using a constraint based

on higher-order moments of the Gaussian error distribution

than the second moment represented by the �2 constraint (de
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Vries et al., 1994; Palatinus & van Smaalen, 2002). However,

none of the MaxEnt methods reliably produces a density

�MEMðrÞ that is sufficiently accurate to enable the extraction of

properties of the chemical bond from it, as is usually done for

theoretical and multipole densities (Bader, 1990).

In the present contribution, we propose yet another modi-

fication to the constraints employed in the MEM, which we

have called the prior-derived F constraints (PDC). A one-

dimensional crystal is used to elucidate how the use of the

PDC suppresses artifacts in �MEMðrÞ. The ability of MEM with

PDC to extract the electron density in the chemical bond from

good X-ray diffraction data is demonstrated for oxalic acid

dihydrate (using simulated data) and sodium nitrate (using

experimental data).

2. Method of prior-derived F constraints

In this work, the entropy S of the electron density in the unit

cell [�ðrÞ] is defined as

S ¼ �
PNpix

k¼1

�k lnð�k=�kÞ; ð1Þ

where �k ¼ �ðrkÞ are the electron-density values on a suffi-

ciently fine grid over the unit cell (k ¼ 1; . . . ;Npix). �k are the

values of a reference electron density, the so-called prior.

MaxEnt methods search for the distribution of density values

f�kg that maximize S subject to the constraint of normalization

of f�kg and subject to the constraint of fitting the diffraction

data (Gilmore, 1996). The data can be incorporated using the

F2 constraint (Sakata & Sato, 1990),

CF2
¼ �1þ

1

NF

X

H

wHjFobsðHÞ � FMEMðHÞj
2; ð2Þ

where FobsðHÞ are the observed structure factors, including

their phases, and FMEMðHÞ is obtained by a discrete Fourier

transform of f�kg. wH are the weights and the summation

extends over all NF reflections in the data set. The index 2 in

CF2
is used to emphasize that this constraint is just a special

case of the general constraint of order n (Palatinus & van

Smaalen, 2002). Using the method of undetermined Lagrange

multipliers, the maximum of

Q ¼ S� �CF2
ð3Þ

is searched for variation of f�kg and �. An analytical solution

does not exist and iterative procedures have to be used to find

�MEMðrÞ (Sakata & Sato, 1990; Skilling & Bryan, 1984).

Convergence is defined when CF2
falls below its expectation

value hCF2
i ¼ 0 (h�2i ¼ 1).

The simplest version of the MEM employs a flat prior

(�k ¼ average electron density) and weights based on the

standard uncertainties (�H) of the reflections (wH ¼ �
�2
H ).

Artifacts in �MEMðrÞ are large compared to the effects of

chemical bonding on the electron density but they are small

compared to �ðrÞ itself. Therefore, this method is only suitable

to study properties with large variations of the electron

density, like disorder and anharmonic temperature par-

ameters.

Artifacts in �MEMðrÞ will be smaller if the difference

between the true (but unknown) electron density �trueðrÞ and

the prior is smaller than the difference between �trueðrÞ and the

flat prior. If bonding electrons are the property of interest, the

appropriate informative prior is the procrystal prior (de Vries

et al., 1996): �ðrÞ ¼ �proðrÞ. �proðrÞ is computed from the elec-

tron densities of free atoms, combined with temperature

parameters and placed at positions obtained from the

structure refinement within the independent-atom model

(Papoular et al., 2002). This choice of prior can be combined

with different sets of weights in the constraint, e.g. with static

weights as proposed by de Vries et al. (1994).

Even with optimal choices for the prior and the weights,

�MEMðrÞ is not sufficiently accurate to describe the effects of

chemical bonding on the electron density. The origin of this

problem can be identified as a feature of the MEM. The

maximum of S [equation (1)] is obtained for �k ¼ �k for all

pixels k. �MEMðrÞ differs from �ðrÞ only as much as is necessary

to reproduce the structure factors in the constraint [equation

(2)]. The structure factors [FMEMðH
0Þ] of reflections H0 for

which experimental values are not available are extrapolated

by the MEM. Because they are not constrained, erroneous

estimates of the non-measured structure factors may be the

result, leading to corresponding artifacts in �MEMðrÞ.

If no prior information on the electron density is available,

the MEM estimates of the missing structure factors are the

best possible estimates. For example, they are much better

than the value zero, which is implicit to Fourier maps.

However, if the re-distribution of valence electrons due to

chemical bonding is the only unknown of the problem, then

good estimates for the structure factors of high-angle reflec-

tions are provided by the procrystal prior, because valence

electrons contribute to low-angle reflections only. FpriorðH
0Þ, as

obtained by discrete Fourier transform of �priorðrÞ, thus

provide good estimates for the true structure factors of high-

angle reflections.

Based on these observations, we propose to append the

constraint by extra terms for the non-measured reflections,

with FpriorðH
0Þ replacing FobsðHÞ [equation (2)]:

CPDC
F2
¼ � 1þ

1

Nall

X

H

wHjFobsðHÞ � FMEMðHÞj
2

þ
1

Nall

X

H0

wH0 jFpriorðH
0
Þ � FMEMðH

0
Þj

2; ð4Þ

where Nall ¼ NF þ Nprior and Nprior is the number of reflec-

tions included in the sum over H0. CPDC
F2

then is used instead of

CF2
in equation (3). However, the convergence is not based on

CPDC
F2

< 0, but instead the calculation is considered converged

when the condition CF2
< 0 [equation (2)] is fulfilled, thus

ensuring a good fit of the resulting MEM density to the

experimental data. Standard uncertainties are assigned to

FpriorðH
0Þ that are equal to the smallest standard uncertainty

amongst the experimental data. Weights wH0 are based on

these standard uncertainties, possibly combined with static
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weighting. The sum over H0 includes all reflections not avail-

able as experimental data up to some suitably chosen high-

angle limit, e.g. ½sinð�Þ=��max ¼ 2:5 Å�1. We call the terms in

the second sum in equation (4) the prior-derived F constraints

(PDC).

The PDC ensure that the MEM estimates of the structure

factors of high-angle reflections are close to FpriorðH
0Þ and thus

much closer to the true values than in the case of the MEM

without the PDC. The PDC can only improve the MEM if

accurate values for the structure factors (Fobs) are available

from experiment up to reasonably high scattering angles, e.g.

½sinð�Þ=��max > 0:9 Å�1. This requirement on the experimental

data is not different from the requirements imposed by good

multipole refinements.

During the determination of the valence electron density by

multipole refinements, a two-step procedure is sometimes

employed. Initially, atomic positions and temperature factors

are determined by refinement against high-angle reflections

[sinð�Þ=�> 0:9 Å�1]. With these parameters fixed, the multi-

pole parameters are determined by a refinement against

reflections with sinð�Þ=�< 0:9 Å�1 (Guillot et al., 2001).

Although entirely different methods, the MEM with PDC and

this special procedure of multipole refinements work because

of the same properties of electron densities and X-ray

diffraction.

3. A one-dimensional model structure

A simple one-dimensional model is used to demonstrate the

basic properties of the MEM with prior-derived F constraints.

The electron density of a one-dimensional (1D) periodic

structure was constructed by superimposing five Gaussian

functions in the unit cell, resulting in the true density �true

(Table 1). Three Gaussians simulate the 1D analogons of

atoms and two further Gaussians simulate the accumulation of

density in bonds between the atoms (Fig. 1a). The procrystal

prior �pro was constructed from the three Gaussians repre-

senting atoms with renormalized widths in order to obtain the

same number of electrons in �true and �pro (Table 1 and Fig.

1b). An inversion center was placed at the origin of the unit

cell. The densities were sampled on a grid with 128 points.
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Table 1
Parameters of the Gaussians G ¼ A exp½�ðx� cÞ2=2�2� used to construct
the prior and true one-dimensional densities.

x, c and � are expressed in pixels, whereas the scale of A is arbitrary. The width
of the unit cell is 128 pixels, numbered from 0 at the origin to 127.

Prior density True density

A � c A � c

A1 60 3.20 0 60 3.12 0
A2 50 3.20 64 50 3.12 64
A3 30 4.66 36 30 4.52 36
B1 0 – – 0.5 11.31 15
B2 0 – – 0.5 5.66 51

Figure 1
(a) One unit cell of the true one-dimensional density sampled on the grid
with 128 pixels. (b) The exaggerated low-density region of the densities.
Black diamonds: �true; grey squares: �pro; bold line: �true � �pro.

Figure 2
The difference densities �diff ¼ �MEM � �true from the calculations
(a) f12p0, (b) f12p32, (c) f12p48. The lines connecting the points serve
as a guide for eye.



�pro is close to �true. It is the task of the MEM to reconstruct

the small differences of the order of 1% of the total density.

This is analogous to the real cases of 3D crystals, where the

procrystal prior density is available and only the deformations

due to chemical bonding remain to be inferred.

Nine different MaxEnt optimizations were performed with

the computer program BayMEM (van Smaalen et al., 2003)

using the Cambridge algorithm (Skilling & Bryan, 1984) and

with �pro as the prior density. Three sets of simulated data

were created, by selecting all structure factors FtrueðhÞ with

index h up to 12, 20 and 28, respectively, as they were obtained

by discrete Fourier transform of �true. Standard uncertainties

� ¼ 0:01 were assigned to all structure factors. MEM calcu-

lations were performed with each data set for the case without

PDC as well as with PDC up to Fpriorð32Þ and Fpriorð48Þ,

respectively. The calculations are denoted with the letter ‘f’

followed by the number of structure factors in the input data

set and the letter ‘p’ followed by the highest index of the

added PDC. For example, f20p48 denotes a calculation with

structure factors up to Ftrueð20Þ in the data and the remaining

structure factors up to Fpriorð48Þ added as PDC.

The resulting difference densities �diff ¼ �MEM � �true are

shown in Figs. 2, 4 and 6. The corresponding MEM structure

factors FMEMðhÞ are compared to FtrueðhÞ in Figs. 3, 5 and 7.

�diff obtained without the prior-derived F constraints shows

large wavy structures that are comparable in amplitude to the

difference between the prior and true densities. The difference

densities are dominated by a few frequencies. These

frequencies correspond to the missing structure factors that

have been most badly estimated. The difference between the

values FtrueðhÞ and FMEMðhÞ of these structure factors is

responsible for the occurrence of waves in the difference

density with periodicity 1=h in the unit cell and with amplitude

proportional to jFtrueðhÞj � jFMEMðhÞj. As an example, the

most prominent structure in �diff of the calculation f20p0 (Fig.

4a) is the wave with frequency 21, which corresponds to the

overestimated value of F(21) (Fig. 5a). The incorrect estimates
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Figure 4
The difference densities �diff ¼ �MEM � �true from the calculations
(a) f20p0, (b) f20p32, (c) f20p48. The lines connecting the points serve
as a guide for eye.

Table 2
Entropy of �MEM from different calculations.

PDC up to:

Observed data up to: 0 F(32) F(48)

F(12) �1.53815 �1.88067 �1.88290
F(20) �1.74731 �1.78002 �1.78153
F(28) �1.76185 �1.76343 �1.76498

Figure 3
The structure factors FMEM (filled diamonds) corresponding to �MEM

from calculations (a) f12p0, (b) f12p32, (c) f12p48. Ftrue (open squares)
and Fpro (open circles) are shown in each plot for comparison. Values of
structure factors with indices higher than 19 are multiplied by 20.
Structure factor F(4) has a value of approximately 64 and is not shown in
the plots.



of the values of F(21) and other structure factors are produced

by the MEM because they increase the entropy of �MEM

compared to the entropy of the map with correct values of the

structure factors. This can be seen by comparing the entropy

of �MEM with unconstrained high-order structure factors and

the entropy of �MEM with high-order structure factors

constrained via PDC (Table 2). The entropy of the former is

always higher than the entropy of the latter.

Calculations with the PDC and with 20 and 28 observed

structure factors produce results with much lower values of

�diff as compared to the calculations without the PDC because

the high-order structure factors are constrained to FpriorðhÞ,

which are very close to FtrueðhÞ (Figs. 3, 5, 7). Calculations with

the PDC up to F(32) still show a high-frequency noise, which

can be correlated with the overestimated values of the

unconstrained structure factors above F(32) (Figs. 5b, 7b). If

PDC up to F(48) are added, the resulting �MEM shows only

very small deviations from �true (Figs. 4c and 6c). The

remaining discrepancies are due to the fact that the MEM

does not fit the low-order structure factors exactly. Never-

theless, the remaining errors in �diff from the calculations

f20p48 and f28p48 are smaller than 0.05 in absolute value,

while the deformation density �true � �pro has minimum �0:86

and maximum 0.50. Thus the MEM with PDC is able to

reconstruct the difference between the �true and �pro with an

average accuracy of a few percent.

The calculations f12p32 and f12p48 demonstrate the

limitations of the method of the prior-derived F constraints. If

all structure factors FðhÞ for h> 12 are replaced by FpriorðhÞ,

then errors with a dominant frequency of 14 are found in the

resulting difference densities (Figs. 2b, 2c). This is the result of

the fact that Fpriorð14Þ ¼ 5:25 is significantly different from

Ftrueð14Þ ¼ 5:76. The value of FMEMð14Þ is constrained to the

value of Fpriorð14Þ and the difference between Fprior and Ftrue is

responsible for the artifacts in �diff . This error is induced by the

incompleteness of the data and cannot be avoided by the data

processing. Such a limited data set is not suitable for accurate

reconstructions of the electron density.
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Figure 5
The structure factors FMEM (filled diamonds) corresponding to �MEM from
calculations (a) f20p0, (b) f20p32, (c) f20p48. Other description as in
Fig. 3.

Figure 6
The difference densities �diff ¼ �MEM � �true from the calculations
(a) f28p0, (b) f28p32, (c) f28p48. The lines connecting the points serve
as a guide for the eye.

Table 3
Results of the calculations based on the simulated data sets n0r100,
n1r100 and n2r100 of oxalic acid.

Calculation C value �min
diff (e Å�3) �max

diff (e Å�3)

n0r100 without PDC 0.0057 �0.376 0.284
n0r100 with PDC 0.0034 �0.017 0.023
n1r100 without PDC 0.0157 �0.371 0.447
n1r100 with PDC 0.0138 �0.060 0.061
n2r100 without PDC 0.0358 �0.540 0.599
n2r100 with PDC 0.0344 �0.201 0.164



4. Simulated data for oxalic acid

The MEM with PDC was applied to simulated data for oxalic

acid dihydrate in order to investigate the effects of the PDC on

realistic data under controlled conditions.

A procrystal density (�pro) was constructed from spherical

atoms combined with temperature parameters and placed at

positions obtained from a standard refinement. The true

electron density (�true) was then defined as the sum of �pro and

the static deformation density �def as obtained from the

multipole model by S̆louf (2001). All densities were sampled

on a grid of 64� 32� 128 pixels. Details of this model toge-

ther with the method to generate simulated data from Fcalc

modified by Gaussian noise of various magnitudes are

described in Palatinus & van Smaalen (2002) (hereafter

denoted Paper I).

It was shown in Paper I that the use of the procrystal prior

density enhances the performance of the MEM strongly

compared to the MEM with a uniform prior, but that the

resulting maps are not artifact-free either. To demonstrate the

functionality of the PDC, the method was applied to the data

sets n0r100, n1r100 and n2r100 [n0, n1 and n2 denoting

increasing levels of noise, and r100 denoting a resolution of

ðsin �=�Þmax ¼ 1:00 Å�1; for details see Paper I]. Two calcu-

lations were performed on each data set. The first calculation

was performed using the classical MEM formalism with the

procrystal prior, the Cambridge algorithm (Skilling & Bryan,

1984) and static weighting with weights w ¼ jHj�4 for data set

n2r100 and w ¼ jHj�5 for data set n1r100 [de Vries et al.

(1994) and equation (13) in Paper I]. These weights produced

the best results according to the C-value criterion applied to

�MEM [equation (12) and Table 5 in Paper I]. The second

calculation was performed with the same algorithm and static

weighting, but with PDC up to sin �=� ¼ 2:5 Å�1 added to the

experimental data. A uniform standard uncertainty of

�PDC ¼ 0:02 was assigned to all reflections in the PDC.

The results of the calculations are summarized in Table 3.

Sections through the difference electron density

�diff ¼ �MEM � �true are shown in Figs. 8, 9 and 10 for the data

sets n0r100, n1r100 and n2r100, respectively. Note that the

data set n0r100 is noiseless, and the data sets n1r100 and

n2r100 were constructed to approximately correspond to very

accurate (n1r100) and moderately accurate (n2r100) experi-

mental data sets. The results clearly show that the use of PDC
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Figure 9
Sections of the difference density �diff ¼ �MEM � �true of oxalic acid
dihydrate in the plane of the oxalic acid molecule, data set n1r100.
(a) Calculation without the PDC. �min ¼ �0:144 e Å�3,
�max ¼ 0:392 e Å�3. (b) Calculation with the PDC up to
sinð�Þ=� ¼ 2:5 Å�1. �min ¼ �0:048 e Å�3, �max ¼ 0:051 e Å�3.
Cambridge algorithm, static weighting, wðHÞ ¼ jHj�5. Contours in both
maps are drawn at intervals of 0.01 e Å�3.

Figure 8
Sections of the difference density �diff ¼ �MEM � �true of oxalic acid
dihydrate in the plane of the oxalic acid molecule, data set n0r100.
(a) Calculation without the PDC. �min ¼ �0:342 e Å�3,
�max ¼ 0:256 e Å�3. (b) Calculation with the PDC up to
sinð�Þ=� ¼ 2:5 Å�1. �min ¼ �0:016 e Å�3, �max ¼ 0:014 e Å�3.
Cambridge algorithm, no static weighting. Contours in both maps are
drawn at intervals of 0.005 e Å�3.

Figure 7
The structure factors FMEM (filled diamonds) corresponding to �MEM from
calculations (a) f28p0, (b) f28p32, (c) f28p48. Other description as in
Fig. 3.



improves the quality of the MEM reconstructions significantly.

The difference density from the calculation without the PDC

contains sharp peaks around the atomic positions. In the

calculation with the PDC, these sharp artifacts disappear, the

overall amount of noise decreases and the noise is distributed

more uniformly. The deformation density �def ¼ �MEM � �pro

obtained from the calculations is in perfect agreement with the

true deformation density and is suitable for a quantitative

analysis of the bonding interactions (Fig. 11).

5. Sodium nitrite

Sodium nitrite has a ferroelectric structure down to low

temperatures. Recently, high-quality X-ray data were

measured at T ¼ 30 K up to a resolution of

ðsin �=�Þmax ¼ 1:125 Å�1, and they were analyzed by multi-

pole refinements (Gohda et al., 2000). Here we report the

results of the MEM with PDC applied to these data. A

procrystal prior for NaNO2 was constructed from independent

atoms with positions and displacement parameters obtained

from a standard refinement on independent spherical atoms,

employing the method of Papoular et al. (2002). MEM

calculations were performed using the Cambridge algorithm

(Skilling & Bryan, 1984), and several weighting schemes (de

Vries et al., 1994) were tested. Static weights wðHÞ ¼ jHj�3

were chosen for the final calculations reported here, because

they produced a distribution of normalized residuals closest to

the expected Gaussian distribution (Palatinus & van Smaalen,

2002).

Calculations were made without PDC and with PDC up to

sin �=� ¼ 2:5 Å�1, resulting in MEM densities denoted as

�noPDC and �PDC, respectively. The difference density

�noPDC
def ¼ �noPDC � �pro contains sharp peaks around the

atomic positions, while �PDC
def ¼ �

PDC � �pro is smooth (Fig. 12),

thus showing the improvements of the MEM electron density

on the introduction of PDC.

A comparison of �PDC
def with the static deformation density

(�mult
def ) from the multipole model (Fig. 12c) shows a close

qualitative resemblance between the two maps. Both maps

exhibit the important expected features around the NO2

group. However, differences are also found, for example the

occurrence of the positive difference density around the Na

site and the smaller height of the maxima around the NO2

anion. At present, we have no detailed understanding of the

origin of the discrepancies between �PDC
def and �mult

def , but several

possible reasons can be proposed.

(i) Six strong reflections were heavily affected by extinction

and were excluded from the data set. The missing reflections

may affect the MEM and multipole refinements in different

ways.

(ii) The MEM, by virtue of its properties, tends to under-

estimate the deviation from the prior. However, this under-

estimation is always within the limits given by the data.

Acta Cryst. (2005). A61, 363–372 Palatinus and van Smaalen � The prior-derived F constraints 369

research papers

Figure 11
Comparison of the deformation densities �def

MEM ¼ �
MEM � �pro (lower

half) and �def
true ¼ �

true � �pro (upper half) of oxalic acid dihydrate in the
plane of the oxalic acid molecule. The center of the molecule lies in the
middle of the figure and contains an inversion center. �def

MEM calculated
with the data set n1r100, Cambridge algorithm, static weighting,
wðHÞ ¼ jHj�5, and PDC up to sinð�Þ=� ¼ 2:5 Å�1. Contours are drawn
at intervals of 0.04 e Å�3.

Figure 12
Sections of the deformation densities of sodium nitrite in the plane of the
NO2 group and Na atom. (a) �MEM � �pro, calculation without the PDC.
�min ¼ �0:931 e Å�3, �max ¼ 0:488 e Å�3. (b) �MEM � �pro, calculation
with the PDC up to sinð�Þ=� ¼ 2:5 Å�1. �min ¼ �0:083 e Å�3,
�max ¼ 0:347 e Å�3. (c) Multipole deformation density [reprinted from
Gohda et al. (2000)]. Contours in all plots at intervals of 0.05 e Å�3, zero
contour omitted.

Figure 10
Sections of the difference density �diff ¼ �MEM � �true of oxalic acid
dihydrate in the plane of the oxalic acid molecule, data set n2r100.
(a) Calculation without the PDC. �min ¼ �0:210 e Å�3,
�max ¼ 0:505 e Å�3. (b) Calculation with the PDC up to
sinð�Þ=� ¼ 2:5 Å�1. �min ¼ �0:193 e Å�3, �max ¼ 0:161 e Å�3.
Cambridge algorithm, static weighting, wðHÞ ¼ jHj�4. Contours in both
maps are drawn at intervals of 0.05 e Å�3.



(iii) The structure of NaNO2 is non-centrosymmetric. The

difference between �PDC
def and �mult

def can be caused by the

inaccuracies of the phases of the structure factors determined

from the refinement with spherical atoms. This source of

inaccuracies will always be present if non-centrosymmetric

structures are described by a model with spherical atoms

(Souhassou et al., 1991).

These problems, especially the latter one, could be at least

partially eliminated by the use of a prior based on the multi-

pole electron density instead of the procrystal prior (Roversi

et al., 1998, 2002). However, it is emphasized that the purpose

of the present work is to establish the PDC as an extension of

the MEM rather than to solve all discrepancies between the

MEM and multipole refinements. The analysis of the origin of

the discrepancies will be the subject of separate research.

6. Discussion

The method of prior-derived F constraints is based on the

observation that the main errors in the MEM reconstructions

of the electron densities with the procrystal prior originate

from incorrect estimates of the MEM-extrapolated values of

those structure factors that are not included in the data set.

The errors can be reduced by replacing these missing structure

factors by those derived from the prior electron density. This

method can be successful only if the additional structure

factors are very close to the true structure factors. For this

reason, the MEM with PDC should be applied only to the

high-resolution data sets, e.g. for data measured up to

sinð�Þ=� ¼ 0:9 Å�1 or more. The intensities of the high-angle

reflections depend mostly on the electron density close to the

atomic cores. This density is not influenced by the chemical

bonding and is therefore almost the same in both the real

and the procrystal electron densities. Thus, the differences

between the real structure factors and the structure factors

derived from the prior decrease with increasing sinð�Þ=�.

On the basis of the remarks made in the previous para-

graph, one can roughly estimate the upper limit of the errors

induced in the MEM reconstruction by the introduction of the

PDC. The errors are caused by approximating the true

structure factors by structure factors derived from the prior.

It is reasonable to suppose that the largest difference

jFtrue � FPDCj will be smaller than the largest difference

jFtrue � Fpriorj close to the limit of the angular resolution; the

latter can be estimated from the experiment as the value of

jFobs � Fpriorj. The error induced by the PDC in the MEM

reconstruction will be roughly equal to this difference.

An application of this method to estimate the errors is

difficult in the case of the 1D example because the number of

structure factors is limited. However, even here the method

yields a reasonable estimate. The average value of

jFobs � Fpriorj for the three Fobs with highest index is 0.49, 0.09

and 0.002 for the data sets f12, f20 and f28, respectively. These

numbers are also the estimates of the amplitude of the errors

in the MEM reconstruction. The true maximum amplitude

ð�diff
max � �

diff
minÞ=2 is 0.32, 0.04 and 0.04 for the three data sets,

respectively. In the first two cases, the estimated errors are

quite good approximations to the true errors. In the case of the

data set with the highest resolution (f28), the true error is

much larger than the estimate. This is caused by the fact that,

in this case, the other sources of error contribute to the total

error much more than the PDC.

A similar analysis was performed on the simulated data of

oxalic acid dihydrate. The differences jFobs � Fpriorj for the

data set n0r100 are plotted in Fig. 13 in the interval

sin �=� 2 h0:9; 1:0 Å�1i. If the upper envelope of the absolute

differences is extrapolated to higher angles, the expected error

can be estimated to be close to 0.04 e Å�3. The true error

amplitude in the data set n0r100 is 0.02 e Å�3 (Table 3), which

lies well within the estimated limit. The errors in the other two

data sets are much larger due to the noise present in the data

sets (Table 3). This observation confirms the underlying

assumption of the PDC, according to which the error intro-

duced by the use of the PDC is much smaller than the errors

caused by the other sources, mainly by the noise in the data.

If the same error analysis is performed on the experimental

data of sodium nitrite and if the experimental errors present in

the data are taken into account, the error due to the intro-

duction of the PDC in the MEM calculation can be estimated

to be below 0.07 e Å�3.

The constraint CPDC
F2

[equation (4)] has two components,

one based on the experimental data and one based on the

model. The relative weighting of the two components is not

defined by the theory. In practice, however, the exact defini-

tion of the weights is not critical. Since FPDC are assumed to be
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Figure 13
Distribution of jFtrue � Fpriorj for the simulated data of oxalic acid
dihydrate (data set n0r100) in the range sin �=� 2 h0:8; 1:0 Å�1i.

Table 4
Maximal differences between MEM densities �PDC

MEM of sodium nitrite
depending on �PDC.

The reference density is �PDC
MEM obtained with �PDC ¼ 0:0005.

�PDC �min
diff (e Å�3) �max

diff (e Å�3)

0.001 �0.011 0.029
0.005 �0.072 0.0115
0.010 �0.079 0.085
0.020 �0.076 0.133
0.050 �0.083 0.084
0.100 �0.093 0.082
0.200 �0.099 0.075
0.500 �0.143 0.219
1.000 �0.288 0.404



very accurate, the weights can theoretically be arbitrarily

large, the true value being limited just by the limitations in

handling small and large numbers by the computer. The large

weights do not cause any problems in the convergence

because the PDC term in CPDC
F2

[the rightmost term in equation

(4)] is exactly fulfilled at the beginning of the iteration. Table 4

shows the differences between MEM calculations of the

density of sodium nitrite using different weighting of the PDC.

The MEM reconstructions using various weights of the PDC

differ only very little (with a maximum difference of about

0.1 e Å�3) for a broad interval of �PDC between 0.0005 and 0.2.

If �PDC becomes larger than 0.2, it allows sizeable artifacts to

develop in the density, as illustrated in Table 4 by the

increased differences for �PDC ¼ 0:5 and �PDC ¼ 1:0. The

differences between the reconstructions with various �PDC are

always confined to the vicinity of the atomic positions. We

assigned uniform weights to all FPDC approximately equal to

the largest weight in the experimental data. In the case of

sodium nitrite, this corresponds to �PDC ¼ 0:01. This assign-

ment proved to be a good choice both for the accuracy of the

result and for the optimization of the computation time.

It has been argued that the only proper prior electron

density is the one based on a non-spherical multipolar model

(Roversi et al., 2002). The MEM calculations on the simulated

data of oxalic acid dihydrate presented here show that very

good reconstructions can be obtained also from a spherical

model. On the other hand, the reconstructed densities of

NaNO2 show substantial differences between the MEM elec-

tron density and the multipolar model that might be amended

by a multipolar prior. The question about the necessary form

of the prior therefore still remains open. However, it should be

emphasized that the problem that is addressed by the PDC is

independent of the precise nature of the prior density. The

difference between the multipolar and procrystal densities is

contained almost exclusively in the low-angle structure factors,

while the MEM with PDC addresses the high-angle structure

factors and the effect addressed by the MEM with PDC will be

present in calculations with both the procrystal and multipolar

prior densities.

The ‘valence-only MEM’ (Roversi et al., 1998) is another

method aiming to suppress the artifacts that arise due to the

missing high-angle structure factors in the constraints. In this

method, the core electrons are kept fixed and are not subject

to the entropy maximization. The remaining valence density

has a lower dynamic range and its high-angle structure factors

are virtually zero. Keeping the core electrons fixed is a much

stronger restriction than fixing only the high-angle structure

factors. If applicable, this method can certainly produce

accurate density reconstructions. However, the valence-only

MEM also relies on the exact knowledge of the displacement

parameters. Therefore, if the displacement parameters cannot

be determined with sufficient accuracy (for example due to the

anharmonicity of the displacements or complex disorder), the

applicability of the valence-only MEM is limited. The MEM

with PDC also makes use of the displacement parameters, but

in a less restrictive manner. This makes the MEM with PDC

applicable to a wider variety of problems. An extensive study

would be required to establish the differences in performance

and applicability of the two methods.

7. Conclusions

The prior-derived F constraints have been introduced into the

MEM for reconstructions of electron densities. It has been

shown that the MEM’s incorrect extrapolation of non-

measured structure factors can lead to occurrence of artifacts

in the resulting electron densities. The prior-derived F

constraints can be added to the experimental data set in order

to constrain the non-measured structure factors to the values

calculated from the procrystal prior density.

A one-dimensional example was used to illustrate funda-

mental properties of the PDC. Simulated data of oxalic acid

dihydrate and experimental data of sodium nitrite demon-

strate the usefulness of the MEM with PDC for studies of the

electron density in the chemical bond.

We believe the progress in the accuracy of the MEM

reconstructions, including the presently described method, will

establish the MEM as an alternative to multipole refinements.

Multipole refinement is an established and powerful method

for obtaining detailed information about the electron density.

If a reliable multipole refinement is available, then the non-

spherical density based on this multipolar model is the most

informative prior that can be used in the MEM calculations.

However, for certain problems, the application of the multi-

pole refinements may become difficult or even impossible. For

example, this might be the case for structures with anharmonic

atomic displacements or with large correlations between

structural parameters or if the number of parameters neces-

sary to describe the structure becomes too large compared to

the number of the reflections. Furthermore, at present the

multipole refinement cannot be applied to modulated struc-

tures, again because of the prohibitively large number of

mutually correlated modulated multipole parameters. In all

these cases, the MEM can provide an attractive alternative to

obtain an accurate model-free description of the electron

density.
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